Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation
نویسنده
چکیده
Estimating principal curvatures and principal directions of a surface from a polyhedral approximation with a large number of small faces, such as those produced by iso-surface construction algorithms, has become a basic step in many computer vision algorithms. Particularly in those targeted at medical applications. In this paper we describe a method to estimate the tensor of curvature of a surface at the vertices of a polyhedral approximation. Principal curvatures and principal directions are obtained by computing in closed form the eigenvalues and eigenvectors of certain 3 3 symmetric matrices defined by integral formulas, and closely related to the matrix representation of the tensor of curvature. The resulting algorithm is linear, both in time and in space, as a function of the number of vertices and faces of the polyhedral surface.
منابع مشابه
Spacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملRepresentation of a digitized surface by triangular faces
This paper proposes a triangulation method for a digitized surface whose points are located on a regular lattice. The method relies on an iterative and adaptive splitting of triangular faces of an initial polyhedral surface. Assuming a bijection between the digitized surface and its approximation, a partition of the data base is performed. The method allows the measurement of the local quality ...
متن کاملRepresentation of a digitized surface by triangular faces
This paper proposes a triangulation method for a digitized surface whose points are located on a regular lattice. The method relies on an iterative and adaptive splitting of triangular faces of an initial polyhedral surface. Assuming a bijection between the digitized surface and its approximation, a partition of the data base is performed. The method allows the measurement of the local quality ...
متن کاملSymmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کامل